Failover with the MySQL Utilities – Part 1: mysqlrpladmin

MySQL Utilities are a set of tools provided by Oracle to perform many kinds of administrative tasks. When GTID-replication is enabled, 2 tools can be used for slave promotion: mysqlrpladmin and mysqlfailover. We will review mysqlrpladmin (version 1.4.3) in this post.

Summary

  • mysqlrpladmin can perform manual failover/switchover when GTID-replication is enabled.
  • You need to have your servers configured with --master-info-repository = TABLE or to add the --rpl-user option for the tool to work properly.
  • The check for errant transactions is failing in the current GA version (1.4.3) so be extra careful when using it or watch bug #73110 to see when a fix is committed.
  • There are some limitations, for instance the inability to pre-configure the list of slaves in a configuration file or the inability to check that the tool will work well without actually doing a failover or switchover.

Failover vs switchover

mysqlrpladmin can help you promote a slave to be the new master when the master goes down and then automate replication reconfiguration after this slave promotion. There are 2 separate scenarios: unplanned promotion (failover) and planned promotion (switchover). Beyond the words, it has implications on the way you have to execute the tool.

Setup for this test

To test the tool, our setup will be a master with 2 slaves, all using GTID replication. mysqlrpladmin can show us the current replication topology with the health command:

$ mysqlrpladmin --master=root@localhost:13001 --discover-slaves-login=root health
# Discovering slaves for master at localhost:13001
# Discovering slave at localhost:13002
# Found slave: localhost:13002
# Discovering slave at localhost:13003
# Found slave: localhost:13003
# Checking privileges.
#
# Replication Topology Health:
+------------+--------+---------+--------+------------+---------+
| host       | port   | role    | state  | gtid_mode  | health  |
+------------+--------+---------+--------+------------+---------+
| localhost  | 13001  | MASTER  | UP     | ON         | OK      |
| localhost  | 13002  | SLAVE   | UP     | ON         | OK      |
| localhost  | 13003  | SLAVE   | UP     | ON         | OK      |
+------------+--------+---------+--------+------------+---------+
# ...done.

As you can see, we have to specify how to connect to the master (no surprise) but instead of listing all the slaves, we can let the tool discover them.

Simple failover scenario

What will the tool do when performing failover? Essentially we will give it the list of slaves and the list of candidates and it will:

  • Run a few sanity checks
  • Elect a candidate to be the new master
  • Make the candidate as up-to-date as possible by making it a slave of all the other slaves
  • Configure replication on all the other slaves to make them replicate from the new master

After killing -9 the master, let’s try failover:

$ mysqlrpladmin --slaves=root:@localhost:13002,root:@localhost:13003 --candidates=root@localhost:13002 failover

This time, the master is down so the tool has no way to automatically discover the slaves. Thus we have to specify them with the --slaves option.

However we get an error:

# Checking privileges.
# Checking privileges on candidates.
ERROR: You must specify either the --rpl-user or set all slaves to use --master-info-repository=TABLE.

The error message is clear, but it would have been nice to have such details when running the health command (maybe a warning instead of an error). That would allow you to check beforehand that the tool can run smoothly rather than to discover in the middle of an emergency that you have to look at the documentation to find which option is missing.

Let’s choose to specify the replication user:

$ mysqlrpladmin --slaves=root:@localhost:13002,root:@localhost:13003 --candidates=root@localhost:13002 --rpl-user=repl:repl failover
# Checking privileges.
# Checking privileges on candidates.
# Performing failover.
# Candidate slave localhost:13002 will become the new master.
# Checking slaves status (before failover).
# Preparing candidate for failover.
# Creating replication user if it does not exist.
# Stopping slaves.
# Performing STOP on all slaves.
# Switching slaves to new master.
# Disconnecting new master as slave.
# Starting slaves.
# Performing START on all slaves.
# Checking slaves for errors.
# Failover complete.
#
# Replication Topology Health:
+------------+--------+---------+--------+------------+---------+
| host       | port   | role    | state  | gtid_mode  | health  |
+------------+--------+---------+--------+------------+---------+
| localhost  | 13002  | MASTER  | UP     | ON         | OK      |
| localhost  | 13003  | SLAVE   | UP     | ON         | OK      |
+------------+--------+---------+--------+------------+---------+
# ...done.

Simple switchover scenario

Let’s now restart the old master and configure it as a slave of the new master (by the way, this can be done with mysqlreplicate, another tool from the MySQL Utilities). If we want to promote the old master, we can run:

$ mysqlrpladmin --master=root@localhost:13002 --new-master=root@localhost:13001 --discover-slaves-login=root --demote-master --rpl-user=repl:repl --quiet switchover
# Discovering slave at localhost:13001
# Found slave: localhost:13001
# Discovering slave at localhost:13003
# Found slave: localhost:13003
+------------+--------+---------+--------+------------+---------+
| host       | port   | role    | state  | gtid_mode  | health  |
+------------+--------+---------+--------+------------+---------+
| localhost  | 13001  | MASTER  | UP     | ON         | OK      |
| localhost  | 13002  | SLAVE   | UP     | ON         | OK      |
| localhost  | 13003  | SLAVE   | UP     | ON         | OK      |
+------------+--------+---------+--------+------------+---------+

Notice that the master is available in this case so we can use the discover-slaves-login option. Also notice that we can tune the verbosity of the tool by using --quiet or --verbose or even log the output in a file with --log.

We also used --demote-master to make the old master a slave of the new master. Without this option, the old master will be isolated from the other nodes.

Extension points

In general doing switchover/failover at the database level is one thing but informing the other components of the application that something has changed is most often necessary for the application to keep on working correctly.

This is where the extension points are handy: you can execute a script before switchover/failover with --exec-before and after switchover/failover with --exec-after.

For instance with these simple scripts:

# cat /usr/local/bin/check_before
#!/bin/bash
/usr/local/mysql5619/bin/mysql -uroot -S /tmp/node1.sock -Ee 'SHOW SLAVE STATUS' > /tmp/before
# cat /usr/local/bin/check_after
#!/bin/bash
/usr/local/mysql5619/bin/mysql -uroot -S /tmp/node1.sock -Ee 'SHOW SLAVE STATUS' > /tmp/after

We can execute:

$ mysqlrpladmin --master=root@localhost:13001 --new-master=root@localhost:13002 --discover-slaves-login=root --demote-master --rpl-user=repl:repl --quiet --exec-before=/usr/local/bin/check_before --exec-after=/usr/local/bin/check_after switchover

And looking the /tmp/before and /tmp/after, we can see that our scripts have been executed:

# cat /tmp/before
# cat /tmp/after
*************************** 1. row ***************************
               Slave_IO_State: Queueing master event to the relay log
                  Master_Host: localhost
                  Master_User: repl
                  Master_Port: 13002
[...]

If the external script does not seem to work, using –verbose can be useful to diagnose the issue.

What about errant transactions?

We already mentioned that errant transactions can create lots of issues when a new master is promoted in a cluster running GTIDs. So the question is: how mysqlrpladmin behaves when there is an errant transaction?

Let’s create an errant transaction:

# On localhost:13003
mysql> CREATE DATABASE test2;
mysql> FLUSH LOGS;
mysql> SHOW BINARY LOGS;
+------------------+-----------+
| Log_name         | File_size |
+------------------+-----------+
| mysql-bin.000001 |     69309 |
| mysql-bin.000002 |   1237667 |
| mysql-bin.000003 |       617 |
| mysql-bin.000004 |       231 |
+------------------+-----------+
mysql> PURGE BINARY LOGS TO 'mysql-bin.000004';

and let’s try to promote localhost:13003 as the new master:

$ mysqlrpladmin --master=root@localhost:13001 --new-master=root@localhost:13003 --discover-slaves-login=root --demote-master --rpl-user=repl:repl --quiet switchover
[...]
+------------+--------+---------+--------+------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| host       | port   | role    | state  | gtid_mode  | health                                                                                                                                                                                                                                                                                              |
+------------+--------+---------+--------+------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| localhost  | 13003  | MASTER  | UP     | ON         | OK                                                                                                                                                                                                                                                                                                  |
| localhost  | 13001  | SLAVE   | UP     | ON         | IO thread is not running., Got fatal error 1236 from master when reading data from binary log: 'The slave is connecting using CHANGE MASTER TO MASTER_AUTO_POSITION = 1, but the master has purged binary logs containing GTIDs that the slave requires.', Slave has 1 transactions behind master.  |
| localhost  | 13002  | SLAVE   | UP     | ON         | IO thread is not running., Got fatal error 1236 from master when reading data from binary log: 'The slave is connecting using CHANGE MASTER TO MASTER_AUTO_POSITION = 1, but the master has purged binary logs containing GTIDs that the slave requires.', Slave has 1 transactions behind master.  |
+------------+--------+---------+--------+------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+

Oops! Although it is suggested by the documentation, the tool does not check errant transactions. This is a major issue as you cannot run failover/switchover reliably with GTID replication if errant transactions are not correctly detected.

The documentation suggests errant transactions should be checked and a quick look at the code confirms that, but it does not work! So it has been reported.

Some limitations

Apart from the missing errant transaction check, I also noticed a few limitations:

  • You cannot use a configuration file listing all the slaves. This becomes boring once you have a large amount of slaves. In such a case, you should write a wrapper script around mysqlrpladmin to generate the right command for you
  • The slave election process is either automatic or it relies on the order of the servers given in the --candidates option. This is not very sophisticated.
  • It would be useful to have a –dry-run mode which would validate that everything is configured correctly but without actually failing/switching over. This is something MHA does for instance.

Conclusion

mysqlrpladmin is a very good tool to help you perform manual failover/switchover in a cluster using GTID replication. The main caveat at this point is the failing check for errant transactions, which requires a lot of care before executing the tool.

The post Failover with the MySQL Utilities – Part 1: mysqlrpladmin appeared first on MySQL Performance Blog.

Failover with the MySQL Utilities: Part 2 – mysqlfailover

In the previous post of this series we saw how you could use mysqlrpladmin to perform manual failover/switchover when GTID replication is enabled in MySQL 5.6. Now we will review mysqlfailover (version 1.4.3), another tool from the MySQL Utilities that can be used for automatic failover.

Summary

  • mysqlfailover can perform automatic failover if MySQL 5.6′s GTID-replication is enabled.
  • All slaves must use --master-info-repository=TABLE.
  • The monitoring node is a single point of failure: don’t forget to monitor it!
  • Detection of errant transactions works well, but you have to use the --pedantic option to make sure failover will never happen if there is an errant transaction.
  • There are a few limitations such as the inability to only fail over once, or excessive CPU utilization, but they are probably not showstoppers for most setups.

Setup

We will use the same setup as last time: one master and two slaves, all using GTID replication. We can see the topology using mysqlfailover with the health command:

$ mysqlfailover --master=root@localhost:13001 --discover-slaves-login=root health
[...]
MySQL Replication Failover Utility
Failover Mode = auto     Next Interval = Tue Jul  1 10:01:22 2014
Master Information
------------------
Binary Log File   Position  Binlog_Do_DB  Binlog_Ignore_DB
mysql-bin.000003  700
GTID Executed Set
a9a396c6-00f3-11e4-8e66-9cebe8067a3f:1-3
Replication Health Status
+------------+--------+---------+--------+------------+---------+
| host       | port   | role    | state  | gtid_mode  | health  |
+------------+--------+---------+--------+------------+---------+
| localhost  | 13001  | MASTER  | UP     | ON         | OK      |
| localhost  | 13002  | SLAVE   | UP     | ON         | OK      |
| localhost  | 13003  | SLAVE   | UP     | ON         | OK      |
+------------+--------+---------+--------+------------+---------+

Note that --master-info-repository=TABLE needs to be configured on all slaves or the tool will exit with an error message:

2014-07-01 10:18:55 AM CRITICAL Failover requires --master-info-repository=TABLE for all slaves.
ERROR: Failover requires --master-info-repository=TABLE for all slaves.

Failover

You can use 2 commands to trigger automatic failover:

  • auto: the tool tries to find a candidate in the list of servers specified with --candidates, and if no good server is found in this list, it will look at the other slaves to see if one can be a good candidate. This is the default command
  • elect: same as auto, but if no good candidate is found in the list of candidates, other slaves will not be checked and the tool will exit with an error.

Let’s start the tool with auto:

$ mysqlfailover --master=root@localhost:13001 --discover-slaves-login=root auto

The monitoring console is visible and is refreshed every --interval seconds (default: 15). Its output is similar to what you get when using the health command.

Then let’s kill -9 the master to see what happens once the master is detected as down:

Failed to reconnect to the master after 3 attemps.
Failover starting in 'auto' mode...
# Candidate slave localhost:13002 will become the new master.
# Checking slaves status (before failover).
# Preparing candidate for failover.
# Creating replication user if it does not exist.
# Stopping slaves.
# Performing STOP on all slaves.
# Switching slaves to new master.
# Disconnecting new master as slave.
# Starting slaves.
# Performing START on all slaves.
# Checking slaves for errors.
# Failover complete.
# Discovering slaves for master at localhost:13002
Failover console will restart in 5 seconds.
MySQL Replication Failover Utility
Failover Mode = auto     Next Interval = Tue Jul  1 10:59:47 2014
Master Information
------------------
Binary Log File   Position  Binlog_Do_DB  Binlog_Ignore_DB
mysql-bin.000005  191
GTID Executed Set
a9a396c6-00f3-11e4-8e66-9cebe8067a3f:1-3
Replication Health Status
+------------+--------+---------+--------+------------+---------+
| host       | port   | role    | state  | gtid_mode  | health  |
+------------+--------+---------+--------+------------+---------+
| localhost  | 13002  | MASTER  | UP     | ON         | OK      |
| localhost  | 13003  | SLAVE   | UP     | ON         | OK      |
+------------+--------+---------+--------+------------+---------+

Looks good! The tool is then ready to fail over to another slave if the new master becomes unavailable.

You can also run custom scripts at several points of execution with the --exec-before, --exec-after, --exec-fail-check, --exec-post-failover options.

However it would be great to have a --failover-and-exit option to avoid flapping: the tool would detect master failure, promote one of the slaves, reconfigure replication and then exit (this is what MHA does for instance).

Tool registration

When the tool is started, it registers itself on the master by writing a few things in the specific table:

mysql> SELECT * FROM mysql.failover_console;
+-----------+-------+
| host      | port  |
+-----------+-------+
| localhost | 13001 |
+-----------+-------+

This is nice as it avoids that you start several instances of mysqlfailover to monitor the same master. If we try, this is what we get:

$ mysqlfailover --master=root@localhost:13001 --discover-slaves-login=root auto
[...]
Multiple instances of failover console found for master localhost:13001.
If this is an error, restart the console with --force.
Failover mode changed to 'FAIL' for this instance.
Console will start in 10 seconds..........starting Console.

With the fail command, mysqlfailover will monitor replication health and exit in the case of a master failure, without actually performing failover.

Running in the background

In all previous examples, mysqlfailover was running in the foreground. This is very good for demo, but in a production environment you are likely to prefer running it in the background. This can be done with the --daemon option:

$ mysqlfailover --master=root@localhost:13001 --discover-slaves-login=root auto --daemon=start --log=/var/log/mysqlfailover.log

and it can be stopped with:

$ mysqlfailover --daemon=stop

Errant transactions

If we create an errant transaction on one of the slaves, it will be detected:

MySQL Replication Failover Utility
Failover Mode = auto     Next Interval = Tue Jul  1 16:29:44 2014
[...]
WARNING: Errant transaction(s) found on slave(s).
Replication Health Status
[...]

However this does not prevent failover from occurring! You have to use --pedantic:

$ mysqlfailover --master=root@localhost:13001 --discover-slaves-login=root --pedantic auto
[...]
# WARNING: Errant transaction(s) found on slave(s).
#  - For slave 'localhost@13003': db906eee-012d-11e4-8fe1-9cebe8067a3f:1
2014-07-01 16:44:49 PM CRITICAL Errant transaction(s) found on slave(s). Note: If you want to ignore this issue, please do not use the --pedantic option.
ERROR: Errant transaction(s) found on slave(s). Note: If you want to ignore this issue, please do not use the --pedantic option.

Limitations

  • Like for mysqlrpladmin, the slave election process is not very sophisticated and it cannot be tuned.
  • The server on which mysqlfailover is running is a single point of failure.
  • Excessive CPU utilization: once it is running, mysqlfailover hogs one core. This is quite surprising.

Conclusion

mysqlfailover is a good tool to automate failover in clusters using GTID replication. It is flexible and looks reliable. Its main drawback is that there is no easy way to make it highly available itself: if mysqlfailover crashes, you will have to manually restart it.

The post Failover with the MySQL Utilities: Part 2 – mysqlfailover appeared first on MySQL Performance Blog.